m6ASNP: a tool for annotating genetic variants by m6A function

Shuai Jiang1,2,†, Yubin Xie2†, Zhihao He2†, Ya Zhang2, Yuli Zhao2, Li Chen2, Yueyuan Zheng2, Yanyan Miao2, Zhixiang Zuo1*, Jian Ren1,2,3,*

1Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510060, China
2State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
3Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha 410073, China

Shuai Jiang: jiang22@mail2.sysu.edu.cn
Yubin Xie: xieyb3@mail2.sysu.edu.cn
Zhihao He: hezhh5@mail2.sysu.edu.cn
Ya Zhang: zhangya6@mail2.sysu.edu.cn
Yuli Zhao: zhaoyli3@mail2.sysu.edu.cn
Yueyuan Zheng: zhyuey2@mail2.sysu.edu.cn
Yanyan Miao: miaoyany@mail.sysu.edu.cn

†Contributed equally

*Correspondence to: Tel/Fax: +86 20 87342325; Jian Ren: renjian.sysu@gmail.com, ORCID: 0000-0002-4161-1292; Zhixiang Zuo: zuozhx@sysucc.org.cn, ORCID: 0000-0002-2492-2689.

Abstract

Background
Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases. N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed that aberrant m6A modifications are involved in many diseases.

Findings

In this study, we present a user-friendly web server called “m6ASNP” that is dedicated to the identification of genetic variants targeting m6A modification sites. A random forest model was implemented in m6ASNP to predict whether the methylation status of a m6A site is altered by the variants surrounding the site. In m6ASNP, genetic variants in a standard VCF format are accepted as the input data, and the output includes an interactive table containing the genetic variants annotated by m6A function. In addition, statistical diagrams and a genome browser are provided to visualize the characteristics and annotate the genetic variants.

Conclusions

We believe that m6ASNP is a highly convenient tool that can be used to boost further functional studies investigating genetic variants. The web server “m6ASNP” is implemented in JAVA and PHP and is freely available at http://m6asnp.renlab.org.

KEYWORDS: N6-methyladenosine (m6A), variant annotation, variant effect prediction, random forest

Introduction

Due rapid improvements in high-throughput sequencing technology, the cost and time requirements of these technologies have been greatly reduced, which has triggered the explosive growth of high-throughput sequencing data associated with various diseases. The major goal of these high-throughput sequencing studies is to identify disease-causing variants. However, distinguishing the few disease-causing variants from the majority of passenger variants remains a major challenge.
Computational methods that accurately interpret and prioritize the large amount of variants are urgently needed.

Many types of variants have different effects on the function of genes. Non-synonymous variants, which alter the amino acids in a protein sequence, are among the most studied classes of variants. Alterations in the protein sequence can cause protein dysfunction due to a variety of different mechanisms. For example, variants in critical sites of the catalytic domain may affect protein catalytic functions [1]; variants in amino acids critical to the protein structure may affect protein-protein interactions [2], protein stability [3] and other important features [4]. Moreover, certain amino acids changes can affect post-translational modification, such as phosphorylation [5, 6], lysine modification [7] and glycosylation [8]. Currently, most bioinformatics tools mainly focus on interpreting non-synonymous variants. For example, SIFT [9] and PolyPhen-2 [10] can predict the tolerance of non-synonymous variants through sequence conservation; several tools, such as PhosphoSNP [11] and MIMP [12], predict whether amino acids changes affect post-translational modifications.

Compared to non-synonymous variants, synonymous variants are neglected by most studies investigating diseases, particularly studies investigating tumors [13]. These variants are understudied because they do not alter the amino acid sequence of a protein and are considered "silent" variants. These variants are treated as "neutral" variants in evolutionary studies. However, growing evidence suggests that synonymous variants also affect the function of genes and cause various diseases [14]. Synonymous variants can result in abnormal post-transcriptional regulation, such as mRNA splicing [15], stability [16] and translation speed [17]. Many studies have shown that abnormalities in post-transcriptional regulation are closely related to genetic diseases and complex diseases [18-20]. Several bioinformatics tools that predict the effect of variants on post-transcriptional regulation are available, such as MutPred Splice [21] and SILVA [22], which primarily focus on mRNA splicing.

The post-transcriptional modification of mRNA is also an important post-transcriptional regulatory mechanism, and N6-methyladenosine (m^6A) modification is among the most highest abundances in post-transcriptional modification [23], which regulates the metabolic processes of most RNA,
including the splicing [24], stability [25] and translation of mRNA [26]. m^6A modification is closely related to multiple diseases. Recently, FTO, an m^6A demethylase, have been found to play an important role in the development of recessive lethality syndrome [27]. Abnormal m^6A regulation can lead to individual developmental retardation [28], head malformations [27], mental retardation [29], brain dysfunction [30] and cardiac malformations [31]. More recently, increasing evidence has shown that dysregulation of m^6A modification was closely related to cancer development. It was shown that abnormal of m^6A modification and its regulators can lead to leukemia [32], prostate cancer [33], breast cancer [34, 35], bladder cancer [36] and liver cancer [37]. Therefore, it is important to evaluate the effect of variants on m^6A modification, providing new perspective of understanding the variants, particularly for those synonymous variants, thus help finding more disease-causing variants.

There exists a number of bioinformatics tools developed for predicting m^6A sites, most of which are based on sequence characteristics. IRNA-Methyl [38] and pRNAm-PC [39] utilized support vector machine (SVM) to construct a prediction model based on the distribution sequence characteristics. SRAMP [40] is a Random Forest based tool trained on the single-nucleotide resolution m^6A sites from miCLIP-Seq experiments [41, 42]. However, these tools are not specifically designed to deal with the variant data to evaluate the effects of the variants on m^6A modification. It is highly desirable to develop a tool specifically for predicting the effects of variant on m^6A modification.

In this paper, we first developed an accurate m^6A site prediction tool that is superior to other similar tools. Based on m^6A site prediction tool, we constructed a webserver called “m6ASNP” that is dedicated to predict if methylation status of an m^6A site is altered by variants around the site. We then applied m^6ASNP to the variants collected from dbSNP.

Data collection

To construct the prediction model, we first obtained the single-base-resolution m^6A sites from two recently published miCLIP experiments. We collected 16,079 human m^6A sites from Linder et al [41], and 43,155 human m^6A sites from Ke et al [42]. Specifically, in Ke’s paper, two tissue samples from mouse are also tested, from which we collected 8748 and 30078 N6-methyladenosines in liver and
brain, respectively. We then combined these data sets to obtain a non-redundant data set that contains 55,548 sites in human and 36,192 sites in mouse. For human model, we used 35,871 non-redundant m^6A sites as positive training set, and the rest 19,677 m^6A sites were used as positive test set. Similarly, for mouse model, 25,334 m^6A sites were preserved as positive training set, and another 10,858 m^6A sites were used as positive test set. The negative data sets were generated according to the distribution of the positive sets. Because the majority of m^6A sites conformed to a DRACH motif, we first defined the potential m^6A sites as adenine sites that conform to the AC motif. Using the positive data sets as references, we extracted the non-methylated adenines that were followed by a cytosine in the same exon as the negative data set. From the human genome, we extracted 1,904,016 adenine sites as the negative training set, while the negative test set consisted of 1,286,588 adenine sites. In the case of mouse genome, 1,519,570 adenine sites were extracted as negative training set and 625,600 adenine sites were constructed as negative test set (Supplementary Data).

To decipher the potential applications of m6ASNP, we further collected a complete set of genetic variants from dbSNP for human and mouse. The single-nucleotide variations (SNVs) within the exonic regions were preserved for subsequent analysis. Totally, 13,079,416 and 2,668,046 SNVs were collected in human and mouse, respectively. To investigate the potential role of these SNVs in reshaping the m^6A event, m^6A sites from two miCLIP-seq studies [41, 42], two PA-m^6A-seq experiments [43] and 244 MeRIP-seq samples were integrated. Using m6ASNP, we further predicted the potential m^6A-associated variants from the above data set. Besides, a transcriptome-wide prediction was also performed. Overall, 311,706 and 40,308 m^6A-associated variants were obtained from human and mouse, respectively.

In order to identify the potential roles of m^6A-associated variants in post-transcriptome regulation, the RBP binding sites from starBase2 [44] and CLIPdb [45], the miRNA–RNA interactions from starBase2 and the canonical splice sites (GT–AG) from Ensembl annotations were collected. In addition, we also obtained a large number of disease-associated SNPs from different data sets (GWAS catalog [46], Johnson and O’Donnel [47], dbGAP [48], GAD [49] and ClinVar [50]) to perform disease-association analysis.
Results

Construction of m6ASNP

As illustrated in Fig. 1A, m6ASNP was developed using random forest algorithm (see methods for detail). In order to evaluate the contribution of different encoding features, we first computed the mean decrease of Gini impurity (also known as Gini importance) for the human and mouse model. The distribution plot of Gini importance in different features showed that the primary sequence was the most effective feature for predicting potential m^6A sites. Nucleotides in the DRACH motif around the N6-methyladenosine were dominated for classification (Fig S1A). However, secondary structures were still observed to contribute the prediction of m^6A sites. Further evaluation on the prediction capability of primary sequence and secondary structure indicated that the addition of structural features to the sequence features can improve the accuracy and robustness of both models (Fig S1B). Therefore, in the final model of both human and mouse, we combined those features together to obtain a better performance. Next, to evaluate the performance of m6ASNP, 4-, 6-, 8- and 10-fold cross validations were performed on both the human and mouse models. In both species, the AUCs of all of the validations were close and larger than 0.84 (Fig. 1B and Fig. 1D), indicating that m6ASNP is an accurate and robust predictor. To further assess the prediction capability in unknown data, we then compared m6ASNP with the two other publicly available predictors, iRNA-Methyl and SRAMP, in the independent test set. As a result, the performance of m6ASNP was found to be superior to all other predictors in both the human and mouse models (Fig. 1C and Fig. 1E).

To balance the prediction accuracy, we selected three thresholds with high, medium and low stringencies for classification based on the evaluation result from 10-fold cross-validation. The high, medium and low thresholds were selected by controlling the false positive rate at 0.05, 0.1 and 0.15, respectively. Table 1 presented the detail performance under these three selected thresholds. In general, the high threshold provides the most stringent criterion and is usually used in large-scale prediction. The medium threshold is a balanced criterion and may be appropriate for most cases. The
low threshold is the loosest criterion. When users expect to retain as much potential sites as possible, this threshold would be the best option.

Usage of m6ASNP

In m6ASNP, a standard VCF format or a simplified tab delimited file are supported as input data (Fig. 2A). As an example, we applied m6ASNP to the “common and clinical” variants VCF file obtained from ClinVar that contain 7,397 variants. The predicted m6A-associated variants are presented in an interactive table (Fig. 2B). Out of 7397 variants, 206 are predicted to affect the m6A modification, either functional gain or loss of modification. The web server will conduct a comprehensive annotation and statistical analysis for all the predicted m6A-associated variants. The m6A-associated variants from ClinVar are mainly enriched in enzyme binding and DNA binding GO molecular functions (Fig. 2C). The sequence logos are presented to show the changes of gained and lost m6A sites between the reference and mutant sequences (Fig. 2D). The “GGACU” motif is more obvious in mutant sequences compared to reference sequences for functional gain variants. While for functional loss variants, the “GGACU” motif is less noticeable in mutant sequences. A circos plot is presented to have an overview of all the m6A-associated variants (Fig. 2E).

Characteristics of m6A-associated variants predicted by m6ASNP

We further applied m6ASNP to all the variants in dbSNP. As a result, we obtained 133,394 functional gain and 214,884 functional loss m6A-associated variants. Among these m6A-associated variants, 6,235 located at/near the m6A sites from miCLIP experiments and 55,381 located at/near the m6A sites from MeRIP-Seq experiments. To characterize m6A-associated variants predicted by m6ASNP, we performed a systematic comparison between m6A-associated variants and non-m6A-associated variants (non-m6A variants). We found that m6A-associated variants were enriched in protein-coding genes (dbSNP147, 95.77%; dbSNP146, 92.12%), and significantly concentrated in CDS and 3’UTR (Fig. S2A, Table S1). Interestingly, in both CDS and UTR region, m6A-associated variants were more conserved than non-m6A variants (Fig. 3A). For those conserved m6A-associated variants, a significant
portion was synonymous compared to all conserved variants (Fig. 3B, p < 0.0001, hypergeometric test). To further explain the functional role of m⁶A-associated variants, we divided the predicted m⁶A-associated variants into two groups: the functional gain and functional loss variants. The conservation analysis was performed on these two groups and the results were compared to non-m⁶A variants in both CDS and UTR region (Fig. S3A). Strikingly, in most cases, the functional loss variants were found to be more conservative comparing to the gain variants, suggesting that the loss of existing m⁶A sites may undergo stronger selective pressure than the gain mutations on potential adenylate sites. Moreover, m⁶A-associated variants were predicted to be more deleterious than non-m⁶A variants in both the CDS and UTR region (Fig. 3C, two-tailed population test). Again, for the predicted data, the functional loss variants appeared to have a higher deleteriousness comparing to the functional gain variants and the non-m⁶A variants (Fig S3B). Taken together, we conclude that m⁶A-associated variants, especially the functional loss variants, may have important roles and could be driven by positive selection in mammalian genomes. Furthermore, there were more m⁶A-associated variants located near the splice sites relative to the non-m⁶A variants, mostly distributed in the 20-30bp flanking region of the splicing sites, implying that the variants were likely to affect RNA splicing as the means of changing the m⁶A levels (Fig. 3D). Moreover, the m⁶A-associated variants preferentially locate in genes with multiple transcripts (Fig. S2B). These results were in agreement with the findings reported by Xiao et al. [24].

m⁶A-associated variants in disease

Genome wide association studies (GWAS) have revealed many disease-related variants. However, pathogenesis mechanism for most of these disease-related variants were still unknown. We found 1,919 m⁶A-associated variants from human dbSNP were recorded either in GWAS studies or ClinVar database. These 1,919 m⁶A-associated variants were related to various diseases, including cardiovascular phenotype, muscular dystrophy, Tuberous sclerosis syndrome and cancer. Among them, Hereditary cancer (436 variants, 22.74%, p=2.27e-30, Chi-squared test), Familial breast cancer (96 variants, 5.01%; p=8.33e-9, Chi-squared test) and Hereditary nonpolyposis colorectal cancer (73 variants, 3.81%; p=5.5e-5, Chi-squared test) were the top enriched disease types (Table S2). Our
findings provided insights into the potential pathogenesis mechanism for many diseases related variants whose functions were not clear before.

Synonymous variants are neglected in most previous studies of disease. Since m6ASNP can be used to predict the effect of both non-synonymous and synonymous variant, this tool could significantly supplement the function of current annotating tools that mainly focus on non-synonymous variants.

Indeed, among the m6A-associated variants predicted by m6ASNP, 59.86% and 25.67% are synonymous variants in mouse dbSNP and human dbSNP, respectively. By using m6ASNP, we have identified many m6A-associated synonymous variants that have been shown to be disease-related. For instance, rs139362268, a synonymous variant of PALB2, is related to breast cancer and pancreatic cancer. Interestingly, we observed that rs139362268 was occurred in the m6A site of PALB2, in which m6A peaks were detected in six MeRIP-Seq experiments (Fig. S4A). We speculated that the cancer-related synonymous variant rs139362268 might be functional through dysregulation of m6A modification.

m6A-associated variants in post-transcriptional regulation

It has been reported that m6A sites could recruit RBPs that play critical roles in post-transcriptional regulations [51]. We systematically examined the genomic position relationship between m6A-associated variants and RBPs to determine whether m6A-associated variants function through RBPs. We found the m6A-associated variants were significantly enriched in RBP-binding regions compared to the non-m6A variants (Fig. S4B). More than 50% of the human m6A-associated variants located within RBP-binding regions. We found 19 RBPs were significantly overlapped with the regions having m6A-associated variants (Table S3). As expected, the m6A reader YTHDF2 and m6A eraser ALKBH5 were significantly overlapped with the regions having m6A-associated variants compared to the randomly selected regions. Moreover, GO annotations demonstrated that these RBPs are enriched in RNA splicing, RNA translation and miRNA regulation (Table S3). Among them, SFRS1, a known splicing factor, is reportedly involved in alternative splicing and colocalized with
ALKBH5 in a demethylation-dependent manner, suggesting it might be participated in the regulation of RNA methylation [52].

It has been reported that m⁶A sites are enriched in miRNA target sites and regulated by miRNAs [53]. Consistent with this, we found m⁶A-associated variants predicted by m6ASNP occurred significantly more frequently in miRNA target sites than the non-m⁶A variants (Fig. S4C). The miRNAs with a significant number of m⁶A-associated variants were listed in Table S4. Among them, miR-132-3p and miR-212-3p were mainly expressed in the brain and played critical roles in neuronal functions as well as circadian clock entrainment [54], which is consistent with m⁶A function [55]. Interestingly, m⁶A-associated variants related to miR-132-3p and miR-212-3p were identified in both human and mouse, suggesting a conservation of function in these variants.

Discussion

There is growing evidence showing that aberrant m⁶A modification is a potential pathogenesis mechanism in many diseases including cancer, which suggests the variants disrupting m⁶A modification might cause diseases. However, currently there is still lack of methodology for annotating variants from high-throughput sequencing studies by m⁶A function. To address this, we have developed a novel computation model named m6ASNP that is dedicated to predict variants disrupting m⁶A modification. Using m6ASNP, we performed further functional analysis on m⁶A-associated variants. By integrating data set regarding RBP-binding regions, miRNA-targets and splicing sites, m6ASNP can help to reveal the potential relationship among variants, m⁶A modification and other post-transcriptional regulation. Also, the disease-association analysis had identified more than 2,000 disease-related variants that may be linked with alterations of m⁶A modification. This finding further proved that m6ASNP is a promising tool for studying the potential role of m⁶A variants in clinical investigation.

In conclusion, m6ASNP is a useful computational webserver for annotating variants by m⁶A function. m6ASNP will serve as a supplemental method to run in parallel with other annotating tools to
comprehensively predicting the function of the variants, for both synonymous and non-synonymous, in the high-throughput sequencing studies of diseases.

Methods

Construction of m\(^6\)A site prediction model

The sequences of the flanking regions 30 nucleotides upstream and downstream of a given m\(^6\)A residue were extracted. To transform the primary sequences to numeric vectors, each nucleotide was encoded by four distinct variables. In total, 60 numeric variables were generated for a single m\(^6\)A residue. As reported in recent studies [56, 57], specific RNA secondary structures around the potential adenosines can affect the enzymatic process of RNA methylation. We therefore added secondary structure features to our prediction model. Using the Nussinov algorithm [58], we first predicted the secondary structure for each m\(^6\)A residue and marked the structure state (paired or not paired) with a bracket or dot. For example, a given m\(^6\)A nucleotide with the sequence TTCCGGACTGGCAGG could be represented as (((())))(.(.)). Next, we extracted the secondary structure triplet, formed by the structure state of the three adjacent nucleotides obtained from the predicted RNA structure. The number of occurrences of each triplet in the sequence was counted and normalized to produce a 27-dimension feature vector. Combining all the primary sequences and secondary structure features, we constructed an 87-dimension vector for each m\(^6\)A residue. These vectors were subsequently used as the input for a random forest classifier for training and prediction.

The random forest classifier for human and mouse were train separately on the above collected training set. The tree number was optimized as 500 and the features used for each splitting were set to 9. To assess the performance, we employed 4, 6, 8, 10-fold cross-validation on the training set. The additional test set was also applied in our study to evaluate the robustness. The sensitivity, specificity and Matthew’s correlation coefficient were used to measure the predictor's performance.
Construction of m6ASNP

Based on the m^6A site prediction model, we then developed a computational pipeline to predict the effect of variants on m^6A modification. Firstly, variants were mapped to known transcripts. The wild-type and mutant form of the transcript sequences were then generated for m^6A site prediction. For an m^6A site that occurred in the wild-type transcript and disrupted in the mutant transcript, we defined it as an m^6A-associated loss variant. The m^6A-associated gain variant is conversely formed. To measure the altered degree of m^6A modifications, equation 1 was defined as shown below.

\[
S = \ln\left(\frac{RF_Score_{\text{wild-type}}}{RF_Score_{\text{mutant}}} \right)
\]

Equation 1

In the above equation, S denoted as the alteration score which quantitatively represented the degree of m^6A alterations between reference and mutant samples. RF_Score is the predicted score of a given m^6A site from the random forest model. Obviously, the alteration scores larger than 0 represented m^6A-gain alterations, while score lower than 0 represented m^6A-loss alterations. In some m^6A-associated loss variants, alteration scores were assigned to MAX, which mean that the core AC motif is destroyed by genetic variants and leading to complete losses of m^6A at those sites.

To provide convenience to the research community we developed a web server called “m6ASNP” to specifically predict the effect of variants on m^6A modification. m6ASNP was implemented using JAVA and PHP, and is freely accessible at http://m6asnp.renlab.org.

Derivation of the m6A-associated variants

Based on miCLIP-seq, PA-m^6A-seq and MeRIP-seq data, we then combined them with the SNV data from dbSNP and performed m^6A-association prediction using m6ASNP. Following the same procedure proposed in our previously published work [59], we constructed three confidence levels of annotations of m^6A-associated variants for subsequent analysis.
The first annotation was the high confidence level data that contained the m^6A-associated variants derived from miCLIP-seq and PA-m^6A-seq experiments. Notably, the PA-m^6A-seq can only detect m^6A signal in a resolution of ~23nt, therefore, to obtain precise modification sites, we scanned through all the peak regions and extracted adenosine sites that conformed to DRACH motif as final m^6A sites. On this basis, we retained the variants that located nearby the m^6A sites as the m^6A-associated variants.

The second annotation was the medium confidence level data. We first downloaded all the published MeRIP-seq data from the GEO database. According to the standard analysis pipeline for MeRIP-seq data, we applied MACS2 [60], MeTPeak [61] and Meyer's method [62] to identify the m^6A peaks in each study separately. Generally speaking, in MeRIP-seq experiments, if a given region is identified as enriched in most of the adopted methods, it is more likely to be a true modification signal. Therefore, to obtain reliable m^6A peaks, a tool called MSPC [63] was then applied to construct consensus peaks from the above three methods. In those consensus peaks, we then applied m6ASNP to predict m^6A-associated variants that significantly change the DRACH motif.

The third annotation was the low confidence level data, where we used the whole transcriptome sequences for prediction. With a high threshold, m6ASNP will predict the potential m^6A-associated variants from all collected genetic variants.

In summary, we had constructed 13,703 high confidence level, 54,222 medium confidence level and 243,880 low confidence level of m^6A-associated variants for human. Another 935 high confidence level, 9,404 medium confidence level and 17,739 low confidence level data were also constructed for mouse.

Annotation of m^6A-associated variants

All the identified m^6A-associated variants were annotated by the transcript structure, including the CDS, 3' UTR, 5' UTR, start codon and stop codon etc. For the annotation of non-coding RNA
DASHR [64], miRBase (version 21) [65], GtRNome [66] and piRNABank [67] were used. To test whether the m^6A-associated variants were more preferentially distributed in specific transcript structures, we calculated the proportion of variants that located in a given transcript structure. In order to avoid bias, only the variants that were annotated in mRNA were used, and the proportion in 5′-UTR, CDS and 3′-UTR were calculated. A two-tailed proportion test was then adopted to compare the proportion difference between m^6A-associated variants and non-m^6A variants. Besides, to evaluate their conservation scores and deleteriousness, we further annotated the m^6A-associated variants by ANNOVAR (updated to 1 February 2016) [68]. To avoid any bias, we only preserved those variants located in mRNA for analysis, and compared the conservative and deleterious differences between m^6A-associated variants and non-m^6A variants in the same exon. As the selective pressures were quite different in protein-coding sequences and untranslated regions, the above comparison was carried out separately for the CDS and UTR regions. Specifically, the conservation scores were calculated by phastCons with 100-way and 60-way gene conservation profiles for the human and mouse respectively [69]. The deleteriousness of each variant was measured by integrating the prediction results from five pieces of software (SIFT [70], PolyPhen2 HVAR [10], PolyPhen2 HDIV [10], LRT [71] and FATHMM [72]).

We defined an aggregate score by counting the number of the above methods that consider an SNV to be deleterious. A deleterious score of 0 means that the variant is predicted to be tolerated in all methods, while for a deleterious score of 5 means that the corresponding variant is predicted to be deleterious in all five predictors. As a result, the aggregate score may range from 0 to 5, and a higher score indicate a higher probability of deleterious.

Disease association analysis

An LD analysis was performed for each GWAS disease-associated SNP. We used Haploview (Haploview, RRID:SCR_003076) to obtain the LD mutations using a parameter r^2 > 0.8 in at least one of the four populations from CHB, CEU, JPT and TSI. Then, we selected all m^6A-associated variants
by mapping the variants to GWAS disease-associated SNPs and their LD mutations. Moreover, we collected ClinVar data to annotate the m\(^6\)A-associated variants with specific functions.

Post-transcriptional regulation association analysis

First, the m\(^6\)A-associated variants were intersected with the collected RNA-binding protein (RBP) regions for the same sample. We matched all m\(^6\)A-associated variants with miRNA targets to obtain the m\(^6\)A-associated variants that potentially impacted the miRNA-target interactions. Additionally, we extracted 100 base pairs (bp) upstream of the 5’ splicing sites and 100 bp downstream of the 3’ splicing sites. Subsequently, we matched the m\(^6\)A-associated variants to these regions to obtain the splicing sites affected by the m\(^6\)A-associated variants.

Identification of significant RBPs and miRNAs

To evaluate whether the m\(^6\)A-associated variants were significantly enriched in RBP regions, an empirical evaluation was performed for each RBP. Using YTHDF2 as an example, the process may be described as follows.

First, we calculated the number of m\(^6\)A-associated variants within the YTHDF2 binding regions (defined as \(N_{\text{RBP}}\)). Second, because certain m\(^6\)A-associated variants randomly occur within the YTHDF2 binding regions, we estimated the background count of m\(^6\)A-associated variants for YTHDF2 (defined as \(N_0\)). Thus, we extracted the longest transcript for each gene from the gene annotation files. The weight of the \(i\)th gene was defined as below:

\[
\sum_{i=0}^{n} w(i) = 1 \quad \text{Equation 3}
\]
where n was the total number of genes annotated, and $L(i)$ was the length (bp) of the ith gene. Then, we extracted the same-length reads of all YTHDF2-binding regions, which was defined as N_B, using weighted random sampling of all transcripts collected above. We repeated this procedure 50,000 times and then obtained the frequency F_{RBP} when N_B was greater than N_{RBP} in the cycle. This frequency may be regarded as an estimation of the probability that observing N_B greater then N_{RBP} in random condition. Next, the Benjamini-Hochberg method was applied to control the false positives. An adjusted F_{RBP} less than 0.05 was considered a small probability event, suggesting that the m6A-associated variants were more likely to occur in the RBP-binding regions of YTHDF2. All significant RBPs are listed in Table S2. Certain significant miRNAs, which are listed in Table S3, were obtained by performing a similar analysis of miRNA targets.

Availability of supporting source code and requirements

Project name: m6ASNP

Project home page: https://m6asnp.renlab.org

https://github.com/RenLabBioinformatics/m6ASNP

RRID: SCR_016048

Operating system(s): platform independent

Programing language: PHP, java, javascript

License: GPLv3

Availability of supporting data

The training data and test data collected from Linder et al. and Ke et al. are available in the supplementary data. These and snapshots of the code are also available from the GigaScience GigaDB repository[73].
Declarations

Abbreviations:

m6A: N6-methyladenosine

SNP: single nucleotide polymorphism

SVM: support vector machine

AUC: area under curve

VCF: Variant call format

GO: Gene ontology

LD: Linkage disequilibrium

GWAS: Genome-wide association study

RBP: RNA binding protein

Ethics approval and consent to participate

Not applicable

Disclosure statement

The author(s) declare that they have no competing interests

Funding
This work was supported by grants from the National Key Research and Development Program [2017YFA0106700]; National Natural Science Foundation of China [31771462, 81772614, 31471252, 31500813 and U1611261]; Guangdong Natural Science Foundation [2014TQ01R387, 2014A030313181 and 2017A030313134]; China Postdoctoral Science Foundation [2017M622864]; Fundamental Research Funds for the Central Universities [No. 17lgpy106].

Authors’ contributions

ZZ and JR conceived, designed, and supervised all phases of the project. YX and SJ developed the prediction model. YX and ZH designed and implemented the Web server. YZ, ML and DP performed data analysis. ZZ, YX, SJ and JR wrote the manuscript. All authors read and approved the final manuscript.

References

73. Jiang S; Xie Y; He Z; Zhang Y; Zhao Y; Chen L; Zheng Y; Miao Y; Zuo Z; Ren J (2018): Supporting data for "m6ASNP: a tool for annotating genetic variants by m6A function" GigaScience Database. http://dx.doi.org/10.5524/100428

Fig. 1 - The construction of m6ASNP. (A) The computational pipeline for identifying m^6_A-associated variants. (1) The single-nucleotide-resolution data were collected from recently published miCLIP-seq experiments. (2) The primary sequence and secondary structure features were extracted for subsequent model training process. (3) Genetic variants, such as somatic variants or germline SNPs, were inputted into the computation pipeline. (4) The flanking sequence around the potential m^6_A residue were constructed for both wild-type and mutant samples based on the inputted variants. (5) The loss and gain variants were predicted according to the above data. (B) 4, 6, 8, 10-fold cross-validation were performed on the human model. (C) The performance comparison between m6ASNP and other state-of-art tools on the human test set. (D) The evaluation results of 4, 6, 8, 10-fold cross-validation in mouse model. (E) The performance comparison between m6ASNP and other state-of-art tools on the mouse test set.
Fig. 2 - A snapshot of m6ASNP webserver. (A) The main interface. Variants can be inputted as standard VCF format or tab-delimited flat format. A file uploading module was implemented to support large-scale prediction of m6A-associated variants. (B) The prediction results were listed in the interactive table which allowing fast retrieval of the result data. (C) The Gene Ontology annotation were performed on the predicted m6A-associated variants. (D) To present the alterations of m6A motif, the sequence logos were generated automatically for both functional gain and loss variants. (E) The
gain and loss m\(^6\)A-associated variants, as well as the original SNPs, were illustrated in the circos plot at a genomic level by the BioCircos [74] library.

Fig. 3 - Characteristics of m\(^6\)A-associated variants predicted by m\(^6\)ASNP. (A) The cumulative distribution function (CDF) of phastCons score for different levels of m\(^6\)A-associated variants and non-m\(^6\)A variants in mouse dbSNP and human dbSNP. (B) Proportional distribution of different variant types for the conserved m\(^6\)A-associated variants. (C) Proportional distribution of the m\(^6\)A-associated variants and non-m\(^6\)A variants at three deleterious levels predicted by a combination of five variant function predictors. A two-tailed test of the population proportion was used to assess significance. (D) Proportional distribution of m\(^6\)A-associated variants and non-m\(^6\)A variants at different distances from the splicing sites.

Tables
Table 1 – The prediction performance from 10-fold cross-validation under the high, medium and low threshold.

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Human</th>
<th></th>
<th></th>
<th></th>
<th>Mouse</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ac</td>
<td>Sn</td>
<td>Sp</td>
<td>MCC</td>
<td>Pr</td>
<td>Ac</td>
<td>Sn</td>
<td>Sp</td>
<td>MCC</td>
</tr>
<tr>
<td>High</td>
<td>0.7235</td>
<td>0.2781</td>
<td>0.9461</td>
<td>0.3158</td>
<td>0.7208</td>
<td>0.7154</td>
<td>0.2477</td>
<td>0.9492</td>
<td>0.2894</td>
</tr>
<tr>
<td>Medium</td>
<td>0.7487</td>
<td>0.4497</td>
<td>0.8981</td>
<td>0.3973</td>
<td>0.6882</td>
<td>0.7465</td>
<td>0.4467</td>
<td>0.8964</td>
<td>0.3918</td>
</tr>
<tr>
<td>Low</td>
<td>0.7589</td>
<td>0.5837</td>
<td>0.8465</td>
<td>0.4439</td>
<td>0.6554</td>
<td>0.7591</td>
<td>0.5956</td>
<td>0.8409</td>
<td>0.4471</td>
</tr>
</tbody>
</table>